Modifier of cell adhesion regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth.

نویسندگان

  • Qi Chen
  • Tsan-Ju Chen
  • Paul C Letourneau
  • Luciano Da F Costa
  • David Schubert
چکیده

Modifier of cell adhesion (MOCA) is a member of the dedicator of cytokinesis 180 family of proteins and is highly expressed in CNS neurons. MOCA is associated with Alzheimer's disease tangles and regulates the accumulation of amyloid precursor protein and beta-amyloid. Here, we report that MOCA modulates cell-cell adhesion and morphology. MOCA increases the accumulation of adherens junction proteins, including N-cadherin and beta-catenin, whereas reducing endogenous MOCA expression lowers cell-cell aggregation and N-cadherin expression. MOCA colocalizes with N-cadherin and actin in areas of cell-cell and cell substratum contact and is expressed in neuronal processes. MOCA accumulates during neuronal differentiation, and its expression enhances NGF-induced neurite outgrowth and morphological complexity. We conclude that MOCA regulates N-cadherin-mediated cell-cell adhesion and neurite outgrowth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PTPμ Regulates N-Cadherin–dependent Neurite Outgrowth

Cell adhesion is critical to the establishment of proper connections in the nervous system. Some receptor-type protein tyrosine phosphatases (RPTPs) have adhesion molecule-like extracellular segments with intracellular tyrosine phosphatase domains that may transduce signals in response to adhesion. PTPmu is a RPTP that mediates cell aggregation and is expressed at high levels in the nervous sys...

متن کامل

Ganglioside modulation of neural cell adhesion molecule and N-cadherin- dependent neurite outgrowth

We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human neural cell adhesion molecule (NCAM) or chick N-cadherin as a culture substrate for PC12 cells. NCAM and N-cadherin in the monolayer directly promote neurite outgrowth from PC12 cells via a G-protein-dependent activation of neuronal calcium channels. In the present study we show that ganglioside GM1 does not...

متن کامل

The interaction of the retina cell surface N- acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhesion

We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N-acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because t...

متن کامل

Cadherin Function Is Required for Axon Outgrowth in Retinal Ganglion Cells In Vivo

The cell-cell adhesion molecule N-cadherin strongly promotes neurite outgrowth in cultured retinal neurons. To test whether cadherins regulate process outgrowth in retinal neurons in vivo, we have blocked cadherin function in single cells by expression of a dominant negative N-cadherin mutant. We report that when cadherin function is inhibited, axon and dendrite outgrowth are severely impaired,...

متن کامل

N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro

Retinal ganglion neurons extend axons that grow along astroglial cell surfaces in the developing optic pathway. To identify the molecules that may mediate axon extension in vivo, antibodies to neuronal cell surface proteins were tested for their effects on neurite outgrowth by embryonic chick retinal neurons cultured on astrocyte monolayers. Neurite outgrowth by retinal neurons from embryonic d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2005